LICORN: learning cooperative regulation networks from gene expression data
نویسندگان
چکیده
منابع مشابه
LICORN: learning cooperative regulation networks from gene expression data
MOTIVATION One of the most challenging tasks in the post-genomic era is the reconstruction of transcriptional regulation networks. The goal is to identify, for each gene expressed in a particular cellular context, the regulators affecting its transcription, and the co-ordination of several regulators in specific types of regulation. DNA microarrays can be used to investigate relationships betwe...
متن کاملSupplementary Information: LICORN: learning co-operative regulation networks from gene expression data
We used the normalised data set available at http://genome-www.stanford.edu/cellcycle/data/ rawdata/combined.txt. This expression data set [9] comes from yeast cultures synchronised by four independent methods: alpha for alpha factor arrest, elu for elutriation, cdc15 for arrest of a cdc15 temperature-sensitive mutant, cdc28 for arrest of a cdc28 temperature-sensitive mutant (from [2]). As expl...
متن کامل3.1 Learning Gene Expression Networks from Microarray Data.................................................................... 3
متن کامل
Inferring gene networks from discrete expression data.
The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closed-form marginal likelihood. In this paper, we extend network modeling to discrete data,...
متن کاملMining Time - delayed Gene Regulation Patterns from Gene Expression Data
Discovered gene regulation networks are very helpful to predict unknown gene functions. The activating and deactivating relations between genes and genes are mined from microarray gene expression data. There are evidences showing that multiple time units delay exist in a gene regulation process. Association rule mining technique is very suitable for finding regulation relations among genes. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2007
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btm352